Testing for additivity in nonparametric regression

ثبت نشده
چکیده

This paper discusses a novel approach for testing for additivity in nonparametric regression. We represent the model using a linear mixedmodel framework and equivalently rewrite the original testing problem as testing for a subset of zero variance components. We propose two testing procedures: the restricted likelihood ratio test and the generalized F test. We develop the finite sample null distribution of the restricted likelihood ratio testing and generalized F test using the spectral decomposition of the restricted likelihood ratio and the residual sum of squares respectively. The null distribution is non-standard and we provide a fast algorithm to simulate from the null distribution of the tests. We show, through numerical investigation, that the proposed testing procedures outperform the available methods. And we apply the proposed method to a diabetes dataset. The Canadian Journal of Statistics xx: 1–25; 20?? c © 20?? Statistical Society of Canada Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it themselves. La revue canadienne de statistique xx: 1–25; 20?? c © 20?? Société statistique du Canada c © 20?? Statistical Society of Canada / Société statistique du Canada CJS ??? 2 Vol. xx, No. yy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL TESTING FOR ADDITIVITY IN MULTIPLE NONPARAMETRIC REGRESSION Short title: Testing Additivity

We consider the problem of testing for additivity in the standard multiple nonparametric regression model. We derive optimal (in the minimax sense) nonadaptive and adaptive hypothesis testing procedures for additivity against the composite nonparametric alternative that the response function involves interactions of second or higher orders separated away from zero in L2([0, 1]d)-norm and also p...

متن کامل

Optimal testing for additivity in multiple nonparametric regression

We consider the problem of testing for additivity in the standard multiple nonparametric regression model. We derive optimal (in the minimax sense) nonadaptive and adaptive hypothesis testing procedures for additivity against the composite nonparametric alternative that the response function involves interactions of second or higher orders separated away from zero in L2([0, 1]d)-norm and also p...

متن کامل

Testing additivity in nonparametric regression under random censorship

In this paper, we are concerned with nonparametric estimation of the multivariate regression function in the presence of right censored data. More precisely, we propose a statistic that is shown to be asymptotically normally distributed under the additive assumption, and that could be used to test for additivity in the censored regression setting.

متن کامل

Estimating the error distribution in nonparametric multiple regression with applications to model testing

In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...

متن کامل

Testing for additivity and joint effects in multivariate nonparametric regression using Fourier and wavelet methods

We consider the problem of testing for additivity and joint effects in multivariate nonparametric regression when the data are modelled as observations of an unknown response function observed on a d-dimensional (d ≥ 2) lattice and contaminated with additive Gaussian noise. We propose tests for additivity and joint effects, appropriate for both homogeneous and inhomogeneous response functions, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016